
§1 BBT BREAKING BREAD TOGETHER 1

1. Breaking Bread Together. A program to create collections of dinner parties where the participants
are randomly assembled so that guests meet with the most people possible.
〈 Includes 2 〉
〈Globals 10 〉
〈Functions 9 〉
〈Main 3 〉

2. Just some basic includes. I also like to define values for TRUE and FALSE using # defines. (The
string.h file needs _GNU_SOURCE to be defined to produce a prototype for the strndup( ) function.)
#define TRUE (1 ≡ 1)
#define FALSE (¬TRUE)
〈 Includes 2 〉 ≡
#define _GNU_SOURCE 1
#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include <ctype.h>

#include <time.h>

This code is used in section 1.

3. The main program. The program command line should contain the file which has the list of guests/hosts.
〈Main 3 〉 ≡

int main (int argc , char ∗∗argv )
{

int i, nEvents ← 3, ecount ;
struct event ∗e, events ;
argc−−;
argv ++;
if (¬argc) {

fprintf (stderr , "No guest file was specified\n");
exit (1);

}
〈Read the guest file and build tables 4 〉
〈Generate events 5 〉
〈Display events 6 〉
write statistics ("stats");
}

This code is used in section 1.

4. 〈Read the guest file and build tables 4 〉 ≡
readfile (∗argv );
make relationships ( );
make hostlist ( );
fprintf (stderr , "guest entities: %d (%d m, %d f)\n\n", nGuests , nMales , nFemales );
for (i← 0; i < nGuests ; i++) {

fprintf (stderr , "%s : m%d f%d g%d\n", guestArr [i].name , guestArr [i].male , guestArr [i].female ,
guestArr [i].guests );

}
This code is used in section 3.



2 BREAKING BREAD TOGETHER BBT §5

5. An event consists of the several dinner parties to be hosted. The goal is to use as many unique
relationships as possible while minimizing the number of times a particular relationship is used. First, space
for the event structure is allocated, and then the hosts are selected for each dinner party. Then the other
participants are seated at one of the parties.
〈Generate events 5 〉 ≡

e← &events ;
for (i← 0; i < nEvents ; i++) {

e~next ← (struct event ∗) malloc(sizeof (struct event ));
e← e~next ;
e~pdesc ← determine hosts (nMales + nFemales );
seat guests (e~pdesc);
}
e~next ← Λ;

This code is used in section 3.

6. Not a whole lot of magic here:
〈Display events 6 〉 ≡

e← &events ;
ecount ← 1;
while (e~next ) {

e← e~next ;
write event (e~pdesc , ecount ++);
}

This code is used in section 3.



§7 BBT BREAKING BREAD TOGETHER 3

7. Write out the guest lists into individual files.
#define MAX_FNSTR 128
〈Calculation Functions 7 〉 ≡

void write event (struct party ∗p, int ecount )
{

FILE ∗outf ;
struct guestlist ∗gl ;
char fn [MAX_FNSTR];
sprintf (fn , "Event%03d.tex", ecount );
if ((outf ← fopen (fn , "w")) ≡ Λ) {

fprintf (stderr , "Couldn’t open \"%s\" for writing\n", fn );
return;

}
fprintf (outf , "\\input bbtmac.tex\n\\title{%d}\n", ecount );
while (p) {

fprintf (outf , "\\startparty\n\\host{%s}{%d}\\hcontact{}\n", guestArr [p~hostent ].name ,
p~maxguests );

fprintf (outf , "\\allguests{%d}{%d}{%d}\n", p~males + p~ females , p~males , p~ females );
gl ← p~guests ;
while (gl ) {

fprintf (outf , "\\guest{%s}{%d}{%d}\\gcontact{}\n", guestArr [gl~guestent ].name ,
guestArr [gl~guestent ].male , guestArr [gl~guestent ].female );

gl ← gl~next ;
}
fprintf (outf , "\\endparty");
p← p~next ;

}
fprintf (outf , "\\end\n");
fclose (outf );
}

See also sections 8, 23, and 30.

This code is used in section 9.

8. Now that the events have been output, show the guest array statistics.
〈Calculation Functions 7 〉 +≡

void write statistics (char ∗fn )
{

FILE ∗outf ;
int i;
if ((outf ← fopen (fn , "w")) ≡ Λ) {

fprintf (stderr , "Couldn’t open \"%s\" for writing\n", fn );
return;

}
for (i← 0; i < nGuests ; i++) fprintf (outf , "%25s h=%3d\n", guestArr [i].name , guestArr [i].hosted );
fprintf (outf , "\ng1  g2  cnt\n");
for (i← 0; i < nRels ; i++) fprintf (outf , "%3d %3d %3d\n", relArr [i].g1 , relArr [i].g2 , relArr [i].count );
fclose (outf );
}



4 BREAKING BREAD TOGETHER BBT §9

9. 〈Functions 9 〉 ≡
〈Utility Functions 12 〉
〈Setup Functions 11 〉
〈Calculation Functions 7 〉

This code is used in section 1.

10. We’ll start by defining storage for each guest entity. A guest entity may be more than one person,
e.g., a couple who will attend each dinner party together. Each guest entity is counted as a single endpoint
in a relationship, but we must count the number of seats. In case we want to track the number of males
and females at each dinner party, we keep track of this info here. In addition, we keep track of the number
of times the guest entity has been a host, and the number of guests that may be entertained if hosting
(including the host(s)).
〈Globals 10 〉 ≡

struct guest {
char ∗name ;
int male , female ; /∗ Number of males and females this guest entity represents. ∗/
int hosted , guests ; /∗ The number of times this guest entity has been a host, and the number of

guests that may be entertained. ∗/
int hostingnow , seated ;
} ∗guestArr ;
int nGuests ← 0, nMales ← 0, nFemales ← 0;

See also sections 18, 20, and 22.

This code is used in section 1.

11. Read a file of guests.
〈Setup Functions 11 〉 ≡

void readfile (char ∗filename )
{

FILE ∗inf ;
char oneline [256];
int i;
if ((inf ← fopen (filename , "r")) ≡ Λ) {

fprintf (stderr , "Couldn’t open %s\n", filename );
exit (1);

}
fgets (oneline , sizeof (oneline ), inf );
nGuests ← atoi (oneline );
guestArr ← malloc(sizeof (struct guest) ∗ nGuests );
i← 0;
fgets (oneline , sizeof (oneline ), inf );
while (¬feof (inf ) ∧ i < nGuests ) {

getguest (&(guestArr [i]), oneline );
i++;
fgets (oneline , sizeof (oneline ), inf );

}
fclose (inf );
}

See also sections 19, 21, 25, 26, 27, and 34.

This code is used in section 9.



§12 BBT BREAKING BREAD TOGETHER 5

12. Ingest a line of data from the guest file. Fields are separated by colons. The first field is the name
(or names). The next field contains the number of males and/or females in this entity, prefixed by an ’m’ or
’f’ character, and possibly the number of guests if this entity will be a host, prefixed by a ’g’ character.
〈Utility Functions 12 〉 ≡

void getguest (struct guest ∗theguest , char ∗theline )
{

char ∗f, ∗l, ∗e;
theguest~male ← theguest~ female ← theguest~hosted ← theguest~guests ← 0;
f ← l← theline ;
while (∗l ∧ ∗l 6= ’:’) l++;
e← l − 1;
while (e > f ∧ isspace (∗e)) e−−;
e++;
theguest~name ← strndup(f, (size t)(e− f));
f ← l + 1;
while (f ∧ ∗f) {

while (∗f ∧ isspace (∗f)) f ++;
switch (∗f) {
case ’m’: case ’M’: theguest~male ← strtol (f + 1, &l, 10);

nMales += theguest~male ;
f ← l;
break;

case ’f’: case ’F’: theguest~ female ← strtol (f + 1, &l, 10);
nFemales += theguest~ female ;
f ← l;
break;

case ’g’: case ’G’: theguest~guests ← strtol (f + 1, &l, 10);
hosts .nHosts ++;
f ← l;
break;

}
}
}

See also sections 13, 14, 15, and 16.

This code is used in section 9.

13. If n > 1 return a pseudo-random value between 0 and n− 1, or 0 otherwise.
〈Utility Functions 12 〉 +≡

unsigned int cointoss (int n)
{

if (n ≤ 1) return 0;
return random ( ) % n;
}

14. Since we are dealing with arithmetic sums a lot, it’s convenient to define a quick function which
calculates

∑n
i=1 i. This is the formula attributed to Gauss:

〈Utility Functions 12 〉 +≡
inline int asum (int n)
{

return (n ∗ (n + 1))/2;
}



6 BREAKING BREAD TOGETHER BBT §15

15. Likewise, it will be convenient to quickly calculate the index into the relationship array given two
entities that we wish to address. If we assume 0 ≤ a < b < N (where N is the number of entities, and a and
b are respective indices of entities between which we’d like to find the index into the relationship table, the
formula for the index i is

i = a(N − 1)−

 a∑
j=1

j

+ b− 1.

〈Utility Functions 12 〉 +≡
inline int reli (int a, int b)
{

if (a < b) return a ∗ (nGuests − 1)− asum (a) + b− 1;
else return b ∗ (nGuests − 1)− asum (b) + a− 1;
}

16. This is a little fun: create a random permutation of n numbers returned as a pointer to an array of
ints. If iarr is Λ, then storage sufficient for n integers is allocated and initialized with values from 0 to n−1
before shuffling. Otherwise, it is assumed that iarr points to an array of n integers. If no init is TRUE, then
it is further assumed that iarr contains an array of values which should merely be shuffled. Otherwise, the
array is initialized with values from 0 to n− 1.
〈Utility Functions 12 〉 +≡

int ∗generate permutation (int ∗iarr , int n, int no init )
{

static int initialized ← FALSE;
int k, temp i ;
if (¬initialized ) { /∗ Initialize RNG if we haven’t yet ∗/

srandom ((unsigned int) time (Λ));
initialized ← TRUE;

}
if (iarr ≡ Λ) {

iarr ← (int ∗) malloc(sizeof (int) ∗ n);
no init ← FALSE;

}
if (¬no init )

for (k ← 0; k < n; k++) iarr [k]← k;
〈Permute the array of numbers 17 〉
return iarr ;
}

17. The algorithm is a modern variation of the Fisher-Yates shuffle popularized by Richard Durstenfeld
and Knuth. The algorithm works by swapping the tail element of the array with another element randomly
selected from the array, then reducing the tail pointer.
〈Permute the array of numbers 17 〉 ≡

while (n > 1) {
k ← random ( ) % n; /∗ integer :: 0 ≤ k < n ∗/
n−−;
temp i ← iarr [n];
iarr [n]← iarr [k];
iarr [k]← temp i ;
}

This code is used in section 16.



§18 BBT BREAKING BREAD TOGETHER 7

18. The principal data structure is a relationship (struct rel ). For N people, the number of relationships
among them is

∑N−1
i=1 i, i.e., the fully-connected graph of N nodes. For each event, there will be some number

of hosts who may each feed some number of guests. Relationships are counted between each of the guests
attending a particular host’s dinner. Variables g1 and g2 represent the entity nodes in the relationship, and
count contains the number of times these two entities have had dinner together.
〈Globals 10 〉 +≡

struct rel {
int g1 , g2 , count , unavailable , assigned ;
} ∗relArr ;
int nRels ;

19. Once we’ve read all the guests, we build a table for keeping track of the relationship interactions. We
build the table so that g1 < g2, starting with all the relationships the lowest-numbered entity may have with
the other entities. We build the table in this order so that we more easily locate a relationship in the table
between any two entities by calculating the index. The table is laid out like this:

index g1 g2

0 0 1
1 0 2
2 0 3
...

...
...

n− 2 0 n− 1
n− 1 1 2

n 1 3
...

...
...(

n−1∑
i=1

i

)
− 1 n− 2 n− 1

〈Setup Functions 11 〉 +≡
void make relationships ( )
{

int i, j, c;
nRels ← asum (nGuests − 1);
relArr ← (struct rel ∗) malloc(sizeof (struct rel) ∗ nRels );
c← 0;
for (i← 0; i < nGuests − 1; i++)

for (j ← i + 1; j < nGuests ; j++) {
relArr [c].g1 ← i;
relArr [c].g2 ← j;
relArr [c].count ← relArr [c].unavailable ← relArr [c].assigned ← 0;
c++;

}
}

20. After initialization, hostList will contain a list index values into guestArr for those entities willing to
host. The rest of the variables are used to manage permutations of this list.
〈Globals 10 〉 +≡

struct {
int ∗hostList , nHosts ;
int current host ;
} hosts ;



8 BREAKING BREAD TOGETHER BBT §21

21. Create a list of entities willing to be hosts from data read from the guest configuration file. This list
will be permuted so that we get random collections of hosts for each event.
〈Setup Functions 11 〉 +≡

void make hostlist ( )
{

int i, h;
hosts .hostList ← (int ∗) malloc(sizeof (int) ∗ hosts .nHosts );
for (i← h← 0; i < nGuests ; i++)

if (guestArr [i].guests ) hosts .hostList [h++]← i;
hosts .current host ← hosts .nHosts ;
}

22. Each event consists of a number of dinner parties. Each party has a host entity and guests.
〈Globals 10 〉 +≡

struct guestlist {
int guestent ;
struct guestlist ∗next ;
};
struct party {

int hostent , maxguests ;
int males , females ;
struct guestlist ∗guests ;
struct party ∗next ;
};
struct event {

struct party ∗pdesc ;
struct event ∗next ;
};

23. Generate a list of hosts for an event able to accommodate seats guests.
#define ERR_OUTOFHOSTS (1)
〈Calculation Functions 7 〉 +≡

struct party ∗determine hosts (int seats )
{

struct party ∗p← Λ;
int h;
〈Clear hosting status 24 〉
while (seats > 0) {

h← getnexthost ( );
if (h < 0) {

fprintf (stderr , "Ran out of hosts\n");
exit (ERR_OUTOFHOSTS);

}
p← add host (h, p);
seats −= guestArr [h].guests ;

}
return p;
}



§24 BBT BREAKING BREAD TOGETHER 9

24. 〈Clear hosting status 24 〉 ≡
for (h← 0; h < hosts .nHosts ; h++) guestArr [hosts .hostList [h]].hostingnow ← FALSE;

This code is used in section 23.

25. The key to generating a list of hosts for an event is generating a permutation. The permutation is
exhausted when hosts .current host ≥ hosts .nHosts , in which case a new permutation is created. If a new
permutation is created, then it’s possible that a host may be selected a second time for the same event. If we
find that the host we’re considering is already selected, we swap positions in the permutation with the first
available host. If there are no more hosts available, then we do not have enough seats provided by enough
hosts, and so we return an error value (a host index h < 0).
〈Setup Functions 11 〉 +≡

int getnexthost ( )
{

int h, i, swapped , t;
if (hosts .current host ≥ hosts .nHosts ) {

generate permutation (hosts .hostList , hosts .nHosts , TRUE);
hosts .current host ← 0;

}
h← hosts .hostList [hosts .current host ];
if (guestArr [h].hostingnow ) {

swapped ← FALSE;
for (i← hosts .current host + 1; i < hosts .nHosts ; i++)

if (¬guestArr [hosts .hostList [i]].hostingnow ) {
t← hosts .hostList [i];
hosts .hostList [i]← h;
h← hosts .hostList [hosts .current host ]← t;
swapped ← TRUE;
break;
}

if (¬swapped ) return −1;
}
hosts .current host ++;
return h;
}



10 BREAKING BREAD TOGETHER BBT §26

26. Create a new party structure around a host and add it to the party list. Return a pointer to the new
list head. Then mark the host entity as hosting. The value maxguests should include the host(s).
#define ERR_MEM (2)
〈Setup Functions 11 〉 +≡

struct party ∗add host (int h, struct party ∗p)
{

struct party ∗newp ← (struct party ∗) malloc(sizeof (struct party));
if (¬newp) {

fprintf (stderr , "Could not allocate new party structure\n");
exit (ERR_MEM);

}
newp~hostent ← h;
newp~males ← guestArr [h].male ;
newp~ females ← guestArr [h].female ;
newp~maxguests ← guestArr [h].guests ;
newp~guests ← Λ;
newp~next ← p;
guestArr [h].hostingnow ← TRUE;
guestArr [h].hosted ++;
return newp ;

}

27. Here we attempt to calculate the “goodness” of seating the guest entity g with the party p. Lower
scores are better than higher scores. There is a MAX_BADVALUE which indicates an “infinitely bad” seating.
#define MAX_BADVALUE 10000
#define MF_WEIGHT 20
#define SEEN_WEIGHT 100
#define UNSEEN_WEIGHT −10
〈Setup Functions 11 〉 +≡

int calc objective (int g, struct party ∗p)
{

struct guestlist ∗gl ← p~guests ;
int objvalue , count , seen count , unseen count , mf diff ;
〈Check seating availability 28 〉
〈 Initialize the counters 29 〉
while (gl ) {

count ← relArr [reli (g, gl~guestent )].count ;
if (count ) seen count += count ∗ count ;
else unseen count ++;
gl ← gl~next ;

}
mf diff ← abs (p~males + guestArr [g].male − p~ females − guestArr [g].female );
objvalue ← SEEN_WEIGHT ∗ seen count + MF_WEIGHT ∗mf diff + UNSEEN_WEIGHT ∗ unseen count ;
return objvalue ;
}



§28 BBT BREAKING BREAD TOGETHER 11

28. If there are no seats available for a guest entity at a party, there’s no point in checking further. The
count of males and females at a party represents the number of guests already seated before considering the
current guest entity g. If adding the current guest entity to the guest list will cause the number of guests to
exceed the host’s maxguests , then we return MAX_BADVALUE right away.
〈Check seating availability 28 〉 ≡

if (p~males + p~ females + guestArr [g].male + guestArr [g].female > p~maxguests ) return MAX_BADVALUE;
This code is used in section 27.

29. 〈 Initialize the counters 29 〉 ≡
count ← relArr [reli (g, p~hostent )].count ;
if (count ) {

seen count ← count ∗ count ;
unseen count ← 0;
} else {

unseen count ++;
seen count ← 0;
}

This code is used in section 27.

30. This is probably the most interesting process. Here’s where we try to decide where each guest is
seated. We try to minimize the number of times guests encounter the same people while maximizing the
number of new people they meet.
〈Calculation Functions 7 〉 +≡

typedef struct party ∗PartyPtr;
void seat guests (PartyPtr phead )
{

PartyPtr p, ∗bestp ;
int i, ∗gp , g, bestvalue , testvalue , nbest , need minguests , ∗bg ;
〈 Initialize seating chart 31 〉
〈Calculate host-preferred seating 32 〉
bestp ← (PartyPtr ∗) calloc(hosts .nHosts , sizeof (PartyPtr));
gp ← generate permutation (Λ, nGuests , FALSE);
for (i← 0; i < nGuests ; i++) {

g ← gp [i];
if (guestArr [g].seated ) continue;
p← phead ;
bestvalue ← MAX_BADVALUE;
nbest ← 0;
〈Find the best party score 33 〉
if (nbest ) {

add guest (g, bestp [cointoss (nbest )]);
guestArr [g].seated ← TRUE;

} else fprintf (stderr , "Couldn’t add guest(s) %s\n", guestArr [g].name );
}
free (gp);
free (bestp);
}



12 BREAKING BREAD TOGETHER BBT §31

31. First, clear any previous seating indications. Then mark all the hosts as having been seated (at their
own tables, of course!).
〈 Initialize seating chart 31 〉 ≡

for (i← 0; i < nGuests ; i++) guestArr [i].seated ← FALSE;
p← phead ;
while (p) {

guestArr [p~hostent ].seated ← TRUE;
p← p~next ;
}

This code is used in section 30.

32. As a first pass at seating, we attempt to put a minimum number guests at each party.
#define MIN_GUESTS 6
〈Calculate host-preferred seating 32 〉 ≡

bg ← (int ∗) calloc(nGuests , sizeof (int));
do {

need minguests ← FALSE;
p← phead ;
while (p) {

if (p~males + p~ females < p~maxguests ∧ p~males + p~ females < MIN_GUESTS) {
gp ← generate permutation (Λ, nGuests , FALSE);
bestvalue ← MAX_BADVALUE;
nbest ← 0;
for (i← 0; i < nGuests ; i++) {

g ← gp [i];
if (guestArr [g].seated ) continue;
testvalue ← calc objective (g, p);
if (testvalue < bestvalue ) {

bestvalue ← testvalue ;
bg [0]← g;
nbest ← 1;

} else if ((bestvalue < MAX_BADVALUE) ∧ (testvalue ≡ bestvalue )) bg [nbest ++]← g;
}
if (nbest ) {

g ← bg [cointoss (nbest )];
add guest (g, p);
guestArr [g].seated ← TRUE;
}
if (p~males + p~ females < p~maxguests ∧ p~males + p~ females < MIN_GUESTS)

need minguests ← TRUE;
free (gp);

}
p← p~next ;

}
} while (need minguests );
free (bg );

This code is used in section 30.



§33 BBT BREAKING BREAD TOGETHER 13

33. For the guest g, find the lowest scoring party according to the function calc objective ( ). If more than
one party has the same “best” score, save it on the best score stack, and we’ll randomly choose among them
later. When a new best score is found, clear the stack and save the pointer.
〈Find the best party score 33 〉 ≡

while (p) {
testvalue ← calc objective (g, p);
if (testvalue < bestvalue ) {

bestvalue ← testvalue ;
bestp [0]← p;
nbest ← 1;

} else if (bestvalue < MAX_BADVALUE ∧ testvalue ≡ bestvalue ) bestp [nbest ++]← p;
p← p~next ;
}

This code is used in section 30.

34. Add the guest entity indexed by g onto the guestlist for the party pointed to by p, updating all the
counts. Then update the relationship table, incrementing the number of times every other person seated at
the same party has seen guest entity g.
〈Setup Functions 11 〉 +≡

void add guest (int g, struct party ∗p)
{

struct guestlist ∗gl ← (struct guestlist ∗) malloc(sizeof (struct guestlist));
gl~guestent ← g;
gl~next ← p~guests ;
p~guests ← gl ;
p~males += guestArr [g].male ;
p~ females += guestArr [g].female ;
relArr [reli (g, p~hostent )].count ++;
gl ← p~guests~next ;
while (gl ) {

relArr [reli (g, gl~guestent )].count ++;
gl ← gl~next ;

}
}



14 INDEX BBT §35

35. Index.

_GNU_SOURCE: 2.
a: 15.
abs : 27.
add guest : 30, 32, 34.
add host : 23, 26.
argc : 3.
argv : 3, 4.
assigned : 18, 19.
asum : 14, 15, 19.
atoi : 11.
b: 15.
bestp : 30, 33.
bestvalue : 30, 32, 33.
bg : 30, 32.
c: 19.
calc objective : 27, 32, 33.
calloc : 30, 32.
cointoss : 13, 30, 32.
count : 8, 18, 19, 27, 29, 34.
current host : 20, 21, 25.
determine hosts : 5, 23.
e: 3, 12.
ecount : 3, 6, 7.
ERR_MEM: 26.
ERR_OUTOFHOSTS: 23.
event: 3, 5, 22.
events : 3, 5, 6.
exit : 3, 11, 23, 26.
f : 12.
FALSE: 2, 16, 24, 25, 30, 31, 32.
fclose : 7, 8, 11.
female : 4, 7, 10, 12, 26, 27, 28, 34.
females : 7, 22, 26, 27, 28, 32, 34.
feof : 11.
fgets : 11.
filename : 11.
fn : 7, 8.
fopen : 7, 8, 11.
fprintf : 3, 4, 7, 8, 11, 23, 26, 30.
free : 30, 32.
g: 27, 30, 34.
generate permutation : 16, 25, 30, 32.
getguest : 11, 12.
getnexthost : 23, 25.
gl : 7, 27, 34.
gp : 30, 32.
guest: 10, 11, 12.
guestArr : 4, 7, 8, 10, 11, 20, 21, 23, 24, 25, 26,

27, 28, 30, 31, 32, 34.
guestent : 7, 22, 27, 34.
guestlist: 7, 22, 27, 34.

guests : 4, 7, 10, 12, 21, 22, 23, 26, 27, 34.
g1 : 8, 18, 19.
g2 : 8, 18, 19.
h: 21, 23, 25, 26.
hosted : 8, 10, 12, 26.
hostent : 7, 22, 26, 29, 31, 34.
hostingnow : 10, 24, 25, 26.
hostList : 20, 21, 24, 25.
hosts : 12, 20, 21, 24, 25, 30.
i: 3, 8, 11, 19, 21, 25, 30.
iarr : 16, 17.
inf : 11.
initialized : 16.
isspace : 12.
j: 19.
k: 16.
l: 12.
main : 3.
make hostlist : 4, 21.
make relationships : 4, 19.
male : 4, 7, 10, 12, 26, 27, 28, 34.
males : 7, 22, 26, 27, 28, 32, 34.
malloc : 5, 11, 16, 19, 21, 26, 34.
MAX_BADVALUE: 27, 28, 30, 32, 33.
MAX_FNSTR: 7.
maxguests : 7, 22, 26, 28, 32.
mf diff : 27.
MF_WEIGHT: 27.
MIN_GUESTS: 32.
n: 13, 14, 16.
name : 4, 7, 8, 10, 12, 30.
nbest : 30, 32, 33.
need minguests : 30, 32.
nEvents : 3, 5.
newp : 26.
next : 5, 6, 7, 22, 26, 27, 31, 32, 33, 34.
nFemales : 4, 5, 10, 12.
nGuests : 4, 8, 10, 11, 15, 19, 21, 30, 31, 32.
nHosts : 12, 20, 21, 24, 25, 30.
nMales : 4, 5, 10, 12.
no init : 16.
nRels : 8, 18, 19.
objvalue : 27.
oneline : 11.
outf : 7, 8.
p: 7, 23, 26, 27, 30, 34.
party: 7, 22, 23, 26, 27, 30, 34.
PartyPtr: 30.
pdesc : 5, 6, 22.
phead : 30, 31, 32.
random : 13, 17.



§35 BBT INDEX 15

readfile : 4, 11.
rel: 18, 19.
relArr : 8, 18, 19, 27, 29, 34.
reli : 15, 27, 29, 34.
seat guests : 5, 30.
seated : 10, 30, 31, 32.
seats : 23.
seen count : 27, 29.
SEEN_WEIGHT: 27.
sprintf : 7.
srandom : 16.
stderr : 3, 4, 7, 8, 11, 23, 26, 30.
strndup : 2, 12.
strtol : 12.
swapped : 25.
t: 25.
temp i : 16, 17.
testvalue : 30, 32, 33.
theguest : 12.
theline : 12.
time : 16.
TRUE: 2, 16, 25, 26, 30, 31, 32.
unavailable : 18, 19.
unseen count : 27, 29.
UNSEEN_WEIGHT: 27.
write event : 6, 7.
write statistics : 3, 8.



16 NAMES OF THE SECTIONS BBT

〈Calculate host-preferred seating 32 〉 Used in section 30.

〈Calculation Functions 7, 8, 23, 30 〉 Used in section 9.

〈Check seating availability 28 〉 Used in section 27.

〈Clear hosting status 24 〉 Used in section 23.

〈Display events 6 〉 Used in section 3.

〈Find the best party score 33 〉 Used in section 30.

〈Functions 9 〉 Used in section 1.

〈Generate events 5 〉 Used in section 3.

〈Globals 10, 18, 20, 22 〉 Used in section 1.

〈 Includes 2 〉 Used in section 1.

〈 Initialize seating chart 31 〉 Used in section 30.

〈 Initialize the counters 29 〉 Used in section 27.

〈Main 3 〉 Used in section 1.

〈Permute the array of numbers 17 〉 Used in section 16.

〈Read the guest file and build tables 4 〉 Used in section 3.

〈Setup Functions 11, 19, 21, 25, 26, 27, 34 〉 Used in section 9.

〈Utility Functions 12, 13, 14, 15, 16 〉 Used in section 9.



BBT

Section Page
Breaking Bread Together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 14


	Breaking Bread Together
	Index
	Names of the sections
	Calculate host-preferred seating
	Calculation Functions
	Check seating availability
	Clear hosting status
	Display events
	Find the best party score
	Functions
	Generate events
	Globals
	Includes
	Initialize seating chart
	Initialize the counters
	Main
	Permute the array of numbers
	Read the guest file and build tables
	Setup Functions
	Utility Functions


