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ABSTRACT

In scaling the problem of automatic speech
recognition down to a smaller sub-problem —
that of recognizing individual utterances —
this exploration into a connectionist model of
phoneme recognition stems from the assump-
tion that phonemes should be identifiable as
part of a surrounding context. By including
contextual clues in the form of multiple
contiguous spectral speech frames, a feed-
forward neural network trained through error
back-propagation will have more information
from which to derive phonemic classifications.
An additional assumption is that multiple
speaker data is not only desirable, but even
necessary for proper training of a robust
recognition system.

1. INTRODUCTION

Speech recognition as a field of research is
hardly new. From the 1950’s, it was realized
that recognition of speech by machines could
become the most efficient means of interaction
with systems. Speech is the most natural
form of human communication requiring no
special training or expertise, unlike typing,
for example. If machines could be built
which understand speech, then little additional
training would be required for a person to
have access to information, communication,
and control functions currently provided by
auxiliary human translators. Progress has
been made in many facets of this recognition
problem, but in over 50 years of research, the
complete solution to the speaker-independent
large-vocabulary understanding of continuous
speech eludes us.

1.1 History

Ainsworth (1988) provides some discussion
of the various approaches that have been
applied to the speech recognition problem date.
Early efforts of the 1950’s attempted to exploit
knowledge of acoustic phenomena, recognizing
that different utterances had characteristic
sound spectrogram patterns. By dividing a
speech signal into a number of frequency bands
using analog circuits, energy concentrations
in each band could be correlated with stored
patterns for spoken digit recognition. While
these early systems claimed recognition accu-
racies of 94% to 99% for a single speaker, the
accuracy for additional speakers could drop
to as low as 50%. Another early attempt
involving the classification of phonemes tried
to parameterize the means by which a phoneme
was generated in the vocal tract. It was found
that 12 binary features could be defined to
differentiate between the 50-odd phonemes of
English.

It came to be understood that comparing
simple acoustic patterns could not account
for the wide variety of intensity and duration
values found in everyday speech. In the
1960’s, the concept of signal transformations
was borrowed from vision researchers, whereby
comparison of the transformed signals could
be compared with templates to accomplish
recognition. While some progress was again
made using this technique, success stalled as
researchers attempted to identify units larger
than isolated vowels. Also during this period,
Ainsworth reports early attempts at applying
neural networks to speech recognition by
Talbert et al. (1963) and Nelson et al. (1967).

The next phase of advancement came
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in the 1970’s, when linguistic knowledge is
added to the recognition task. While all
the information for a particular utterance
may be located in the acoustic signal, the
understanding of that utterance depends upon
the listener’s knowledge of the language and
expectation based on previous and projected
context. Systems developed during this time
frequently incorporate dictionaries, language
syntax, or other forms of linguistic information
into recognition systems, in conjunction with
acoustic analysis.

Trends of the recent decade continue to
include linguistic information in speech recog-
nition, enhanced by time-scale distortion for
normalizing variances in that domain. Stochas-
tic models, hidden Markov models (HMMs)
in particular, are currently among the most
popular tools in recognition research today.
A conference in early 1995 sponsored by the
Advanced Research Projects Agency (ARPA)
consisted almost entirely of papers pertaining
to HMMs.

1.2 Current Research

Speech recognition is a vigorous field
of research with hundreds of participants
world-wide. A recent query of the
comp.speech archive at Carnegie Mellon
University (http://www.speech.cs.cmu.
edu/comp.speech) listed 598 links to
speech-related network resources, if this can
be any indication of the level of interest. With
so much activity, it would be no surprise
that there are many and varied viewpoints
on the successful approaches to the speech
recognition problem. Waibel and Lee (1990)
have classified the major efforts of researchers
into four categories.

Template-based speech recognition stores
prototypes for speech patterns in the rec-
ognizer’s lexicon. Unknown utterances are
compared to each template, and the closest
match within some tolerance is selected.
Templates may span words and short phrases
or be more narrowly-defined. Process-
ing requirements become prohibitive as the
recognition dictionary grows large, but the
advantage is that small-scale variances at the

phoneme level are less likely to affect the final
result.

Knowledge-based approaches to speech
recognition attempt to codify experts’ knowl-
edge explicitly into rule-based expert systems.
A wide range of linguistic and acoustic
expertise is available, but combining the many
layers of knowledge has been difficult. While
knowledge-based attempts have themselves
been largely unsuccessful, information gained
from experts has proved valuable to other
endeavors.

Stochastic methods in speech recognition
are dominated by the highly successful hidden
Markov model (HMM). Both temporal and
spectral variabilities of speech signals are
captured by HMMs. One factor limiting the
accuracy of these models is the assumption
that signal probabilities depend upon the
current state only, and not on previous context.
Also, a large corpus of text is required to train
such models. Nonetheless, most success in
speech recognition today is achieved by using
some form of HMM. ARPA (1995) suggests
that current HMM implementations may be
limited in accuracy to vocabularies of only
50 000 to 60 000 words, beyond which spectral
variability degrades performance.

Finally, connectionist, or parallel dis-
tributed processing models of speech recogni-
tion employ artificial neural networks. The
ability of networks to classify highly complex
input vectors makes them well-suited to the
variability inherent in speech signals. Neural
networks are the newest tools in the speech
recognition arsenal, and there is yet much to
be learned about how they may be applied to
the recognition task.

2. MOTIVATION

The author’s emphasis for this project is to
become familiar with some of the terminology
and methods surrounding basic research in
speech recognition using a neural network
as a recognition tool. Speech recognition
has been a long-time interest, and it seemed
appropriate to test the viability of a neural
network system on a rather näıve approach to
this problem. Since it is known that utterances
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have characteristic spectral distributions, and
that a human can be trained to read a sound
spectrogram (Waibel & Lee, 1990), it is logical
that a network properly trained should be able
to perform a similar task.

One of the unsolved difficulties with
continuous speech recognition over single word
recognition is that of word separation and
time invariance. For this study, this issue
has been side-stepped by focusing on phoneme
recognition rather than word recognition.
Phoneme recognition is more directly tied to
the acoustic signal, and relies less on the
language modeling as required by a hidden
Markov model.

An individual phoneme, while recognized
as an entity, may actually be composed of
smaller discernable units of sound. It may be
that some or all of these components constitute
what is essential for identifying the utterance.
It is therefore clear that if the speech signal
is to be partitioned into small segments in
time, that several contiguous segments should
be presented to the network as a group for
training purposes.

Almost all speech recognition research
requires that a speech signal be analyzed
using some means of spectral decomposition.
The author chose to use a tool with which
he had some familiarity and confidence, a
Fourier transform. Many other spectral
decompositions and analysis methods exist
and have been employed in speech recognition
research. Papamichalis (1987) provides several
interesting methods for the coding of speech
signals, some of which may be useful for feature
development. An algorithm for the Fast
Fourier Transform (FFT) is found in Press et
al. (1986) with a complete treatment given by
Oppenheim and Schafer (1975).

Training data should be derived from
naturally spoken contexts, rather than single
word utterances because many phonemes
assume slightly different sounds depending
on the phonemes surrounding them. To be
precise, a phoneme is slightly more than a
unit of sound. As described by Yannakoudakis
and Hutton (1987), a phoneme is actually
a symbolic identifier for a small cluster of

sounds. Changing the identifier changes the
sense of the utterance, as in “/t/in” versus
“/p/in”. Phones, on the other hand, are
more tightly coupled to the actual sound,
and can display the variability that phonemes
possess in different contexts. As an example,
the phoneme /l/ in the word “/l/et” takes
on a slightly different phone when used in
the context “peop/l/e”. This study attempts
to classify the phonemes from their various
context-dependent phones, and therefore the
training data should attempt to provide
instances of phonemes in different positional
contexts.

There have been some successes in produc-
ing recognition systems that have been tuned
to a small number of speakers. To be truly
robust as a recognition system, it is hoped
that speaker independence can be achieved by
training from data provided by a number of
different speakers.

3. METHOD

3.1 The Network

The feed-forward back-propagation net-
work was chosen for the recognition task
for several reasons. Class discussions and
readings from Haykin (1994) have de-mystified
the operation of these networks, and provided
a rudimentary foundation for understanding
error minimization in a complex n-dimensional
space. However, experience has shown
that hidden misconceptions are brought to
light when faced with implementing one’s
understanding in the form of a computer
program. Indeed, this has proved true
more than once during the course of this
investigation.

In addition, feed-forward networks are
relatively simple to implement, and the
connections of these networks are more easily
traced and understood than, for example,
recurrent networks. Since one goal of this
study is to learn more about the difficulties
associated with speech recognition, having a
tool from which feature data can later be
extracted could be very valuable. Nevertheless,
it was tempting to wonder how an Adaptive
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Resonance Network might have been employed
somewhere along the way.

In implementing the back-prop network,
the output (squashing) function φ(v) with
output range [−A, A] was chosen since it leads
to quicker learning in many cases, as discussed
in Haykin (1994).

φ(v) = A tanh(Bv) = A

(

eBv − e−Bv

eBv + e−Bv

)

with derivative function (for back-prop)

φ′(v) =
d

dv
A tanh(Bv) = AB sech2(Bv)

=
4AB

(eBv + e−Bv)
2
.

where A = 1.716 and B = 2/3 are constants.
A plot of these functions is given in Fig. 1.

The other major component of a back-
propagation implementation is the learning
rule. For this study, the generalized delta rule
is used for weight adjustment given by the
equation

wji(n + 1) = wji(n) + α [wji(n) − wji(n − 1)]

+ η δj(n)yi(n),

−4.0 −2.0 0.0 2.0 4.0
v

−4.0

−2.0

0.0

2.0

4.0

Fig. 1. A plot of the output function φ(v)
and its derivative φ′(v).

where η is the learning rate parameter, and
α is a momentum term. These parameters
are modifiable so that different values may be
selected to optimize learning.

Since several network configurations were
to be tested, the network program was
written with sufficient flexibility for varying the
network architecture over the course of several
experiments. By changing parameters in an
experiment configuration file, a new network
configuration consisting of different numbers
of layers or nodes per layer could be built,
and momentum and learning rates could be
assigned. Once the network software was
built, it was tested and debugged using the
XOR problem until it performed as expected.
The network software will also produce a
file containing its complete state at selectable
training intervals so that training could be
halted and resumed with little computational
penalty.

3.2 Phoneme Classes

Back-propagation is a supervised learning
technique requiring that input patterns have
known classifications. The job of the network is
to learn how to reproduce a classification given
a similar input pattern. The next task was to
generate appropriate datasets for training.

A list of phonemes was found through the
comp.speech archives at Carnegie Mellon. Not
all sources agree on the number of unique
phonemes for English and American English.
Rather than try to resolve the debate, this
author considered a subset of 39 phonemes.
These phonemes, their International Phonetic
Alphabet equivalent, and contextual sound
are shown in Table 1. This subset was
chosen by occurrences in a list of the most
common words of English literature as derived
from a word count of the archives of Project
Gutenberg. The word and phoneme list are not
necessarily definitive, but they are sufficient for
the purposes of this study.

From the list of most common words,
sentences were constructed with the goal of
using as many phonemes as possible with
the fewest number of words. A secondary
goal was to avoid common word configurations
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Table 1. Phonemes and their IPA equivalents with examples.

Phoneme IPA Example Phoneme IPA Example

& æ and /&nd/ j j yet /jet/
A � was /wAz/ k k could /kUd/
e � yet /jet/ l l let /let/
i i she /Si/ m m my /maI/
I I it /It/ n n one /wVn/
O = all /Ol/ p p point /poInt/

u u you /ju/ r r for /fOr/
U V good /gUd/ s s such /sVts/
V � but /bVt/ t t but /bVt/
aI �i my /maI/ v v voice /voIs/
aU �V about /VbaUt/ w w was /wAz/
eI �i they /DeI/ z z was /wAz/
oI =i point /poInt/ D � they /DeI/
oU �V own /oUn/ T S thought /TOt/
3R �J turn /t3Rn/ N 8 being /biIN/
b b but /bVt/ S M she /Si/
d d good /gUd/ Z ` vision /vIZVn/

f f for /fOr/ tS Q such /sVtS/
g g good /gUd/ dZ � just /dZVst/
h h her /h3R/

which might lead to word elision. But since
target of this project is to study phoneme
occurrence in natural speech, the sentences
needed to be more than word lists: they
had to follow some grammatical rules, even
if they were semantically nonsensical. The
resulting sentences are rather odd, and perhaps
even mildly amusing, but they fall within the
prescribed objectives. Table 2 lists the sample
sentences and their phonetic spellings.

3.3 Speech Samples

Once the phonemes were chosen and
sentences were written, samples of speakers
saying the sentences were recorded onto a
cassette tape. It would have been possible
to record the samples in the digital domain
directly, but should it be decided that
a different digital sampling rate might be
desirable, having a cassette recording would
avoid the necessity of obtaining new readings
from the speakers. Speakers were allowed
rehearsal readings so that speech would sound
natural, in spite of the awkwardness of the

sentences. In all, eight speakers were recorded
for each of the three sentences, five female and
three male speakers.

3.4 Feature Development

In speech recognition research, a signal is
often divided into short stretches of time called
frames, usually 10ms in length. Although
speech is a continuously varying signal, it is
assumed that the spectral information changes
little over the span of the frame owing to the
relatively slow movement of articulators in the
vocal tract. After spectral analysis, each frame
is considered a spectral snapshot of the speech
signal.

When the cassette recordings were fin-
ished, the speech samples for each of three
sentences were digitized at 16 000Hz using the
audio device of a Sun Sparc5 workstation.
This sample rate was chosen so that the FFT
might provide a generous frequency resolution
without blending the sounds from too great
a stretch of time. A 256-point FFT resolves
the sampled signal into 128 frequency bins
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from 0Hz to 8000Hz. An FFT of this length
spans 16ms, which is slightly longer than the
standard speech frame.

Digitized speech samples were stored in
files, one file per sentence per speaker. Figure 2
displays a sampled signal. A spectral analysis
program was written to convert the raw sample
data into frames of spectral power densities.
The transformed data were also converted into
a PostScript form for printing and display.
The original output of the FFT shows a
tremendous dynamic range of several orders of
magnitude. Since the neural network software
is sensitive to linear changes in input, it would
be necessary to normalize the FFT data in
some way.

As with many other human senses, the
auditory system is sensitive to logarithmic
changes in input, rather than linear changes.
This is true for both power and frequency.
Because it is not without precedent, FFT
frequency bins fi were scaled by log

10
(1 + fi)

to produce a more linear distribution of power.
Power values scaled in this way may still lie
beyond the input range of a network input unit.
Further nomalization would be required.

The normalization curve was derived by

Table 2. Sample Sentences and Their
Phonemic Spellings.

1. But for the good of all such people she
thought with one voice that her own vision
was not so just.

bVt fOr DV gUd Vv Ol sVtS pipVl Si TOt
wIT wVn voIs D&t h3R oUn vIZVn wAz nAt
soU dZVst

2. And yet he could let you in if the point
about which they turn was being taken
through my great project.

&nd jet hi kUd let ju In If DV poInt
VbaUt wItS DeI t3Rn wAz biIN teIkVn
Tru maI greIt prAdZekt

3. Give me change for noticing you.

gIv mi tSeIndZ fOr noUtIsIN ju

calculating the mean and standard deviation
of logarithmic power for each frequency bin.
An upper bound of the scale for each bin
was arbitrarily set to two standard deviations
above the mean, and the lower bound was set

0 20000 40000 60000 80000
Sample Number

−1.2

−0.8

−0.2

0.2

0.8

1.2

Fig. 2. Sample of a speech signal of phrase “But for the good of all such people she thought with
one voice that her own vision was not so just,” spoken by a female speaker.
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to one standard deviation below the mean. The
logarithmic power data in each frequency bin
fi were then scaled according to the following
formula and hard limited to 0 and 1:

normi =
(fi − loweri)

(upperi − loweri)
.

This scaling is admittedly ad hoc, but not
unreasonable.

3.5 Frame Tagging

Once the frame data had been prepared,
it was necessary to label each frame with
its appropriate phoneme value. Additional
software was written to assist in the tagging
of frames. Each frame of each sentence by
each speaker was tagged and written to an
annotated frame file, a file which could be read
by the network software.

The annotation software reads the original
sampled data. A file of frames is initially
tagged by distributing the phonemic spelling
of a sentence across all of the frames in the file.
Each phoneme was therefore initially assigned
several contiguous frames. Then, for each
phoneme, the data samples represented by the
frames tagged by that phoneme were played.
The frames allocated to the phoneme were
adjusted by listening to the played samples,
and making the appropriate adjustments.
Once every frame in the file was properly
labeled, the annotated frame file was written
to disk.

While listening to sample playback, it
was sometimes necessary to alter or delete a
phoneme. One common example was substi-
tuting the phoneme /tS/ for the combination of
phonemes /t/ /j/ between the words ‘let you’.
A phoneme that was commonly deleted was
/h/ between the words ‘yet he’. Figure 3 shows
an example of an annotated frame file with
tags.

3.6 Operation

At this point, the frame spectral pa-
rameters have all been scaled to the range
[0, 1], and each frame has been tagged

with a single phoneme value. For each
experiment, a network architecture is assigned
and learning rate and momentum parameters
are set from the experiment description
file. Also, any number of training sets and
cross-validation sets are selected from among
the available annotated frame files. Then, until
some maximum number of training epochs
is reached, network training is accomplished
according to the following description.

First, a list of available frames from all
training datasets is generated. Then a random
frame selection is made and removed from the
list. The selected frames’ spectral parameters
are transferred to the input layer. The
input signal is propagated forward through the
network. The tag of the chosen frame is used
to indicate the output node which should be
most active, and error is propagated backward
through the network. Weights are adjusted
according to the learning rule. Additional
frames are selected from the list in this fashion
until all frames have been seen. At the end
of the epoch, any cross-validation datasets are
run through a similar process, except that
error is not propagated backward through the
network and weights are not adjusted.

Error calculations are according to
Haykin (1994) summarized here. Output of
node j is denoted by yj(n) for pattern n, and
dj(n) represents the desired output for that
node. For the class of output nodes, the desired
output is A − ǫ if the node is active according
to the frame tag, or −A + ǫ otherwise. The
error signal at the output layer is given by the
equation

ej(n) = dj(n) − yj(n).

Training error and cross-validation error are
calculated according to the following formula:

Et,c =
1

Nt,c

Nt,c
∑

n=1

∑

j∈C

e2

j(n)

where the subscripts t and c denote training or
cross-validation datasets accordingly, and C is
the class of output nodes.

The experiment description file may also
indicate that the network state should be
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dumped to a checkpoint file after a certain
number of epochs. Not only may training
be halted and resumed at the most recent
checkpoint, but the training progress may also
be tracked.

4. RESULTS

Training was attempted using several
learning rates, momentum rates, and network
architectures, with varying degrees of success.
The first experiment to be tried had selected
a learning rate η = 0.01 and a momentum
term of α = 0.8 and a network configuration
of 384–64–39 (three consecutive input frames).
The training error is shown in Fig. 4. Because
the network had ceased reducing error very
early, it was thought that learning and/or

momentum rates were set too high. For this
reason, training was halted after epoch 70
and resumed with a new learning rate η =
0.001 and momentum rate of α = 0.7. This
discontinuity can be seen by the graph in
Fig. 4. Because over 2900 sets of frames were
available for training during this experiment,
270 training epochs required over 4 hours
of compute time on a Sun Ultra 3000 dual
processor machine with 128Mb of physical
memory.

Experiment one was run a second time,
but with the final learning rates. After 240
epochs, the training error curves became nearly
identical. Experiments two and three changed
the network architecture to 128–64–39 and
384–128–39, respectively, with the learning
rates of η = 0.001 and momentum factors of

0 s 0.4 s 0.8 s 1.2 s 1.6 s 2 s 2.4 s 2.8 s 3.2 s 3.6 s 4 s 4.4 s 4.8 s 5.2 s 5.6 s 6 s
0

625

1250

1875

2500

3125

3750

4375

5000

5625

6250

6875

7500

 bV t f O rD V g U d V v O l s V tS p i p V l S i T O t w I T w V n v oI s D& t h 3R oU n v I Z V n w A z n A t s oU dZ V s t  

Fig. 3. The speech signal from Fig. 2 after spectral analysis, normalization, and tagging.
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Fig. 4. Graph of the training error in experiment
one with a network configuration of 384–64–39 and
initial learning and momentum rates of 0.01 and
0.8, respectively. The discontinuity at epoch 70 is
due to the resetting of the learning rate.

α = 0.1. The training error rates leveled off
sooner than in the curve of experiment one.

The evidence of experiments two and three
seems to suggest that these network topologies
are stressed by the variabilities inherent in the
training datasets, and that deeper networks
may provide better results. Experiment four,
with a network topology of 384–128–64–39
did indeed display a steeper error descent
rate than the previous experiments. However,
with nearly 67 000 weights to adjust for each
presentation of 2900 frames of training data,
approximately 37 hours of computer time
was required before the epoch training error
dropped below 0.5. Training was stopped
after epoch 1530 where network performance
on the training sets was quite acceptable.
However, generalization on a dataset not seen
by the network was abominable. Since the
calculation of cross-validation error had not
been implemented yet, it was not possible to
see where over-training had begun. When
cross-validation error had been implemented in
the network software, experiment four was run

again with the curious result shown in Fig. 5.

5. ANALYSIS

Time would not allow continuing the
investigation into the cause of the strange
perpetually increasing cross-validation error.
From this result, it seems as if the network
is unable to generalize at all, and that its
learning effort is being applied exclusively to
the memorization of the specific input/output
correspondences in the training data. This
result is disturbing.

There is an unresolved concern pertaining
to the mapping of input data to the input
layer of the network. The network squashing
function φ(v) in its unscaled form produces
output in the range [−1, 1]. An interesting
question is raised if power spectrum data is
biased and re-scaled into this range. Power
values are scaler, not vector, quantities, yet
biasing an re-scaling the power value could
cause the presence of a signal to both excite
and inhibit attached nodes, depending on
whether the power value is above or below its
midway point. A quick experiment replacing
the φ(v) and φ′(v) with their logistic function

0 200 400 600 800 1000
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1.0

2.0

3.0

E
rr

or

Experiment Four
384−128−64−39, eta=0.001, alpha=0.1

Training Error
Cross−validation Error

Fig. 5. Graph of training and cross-validation
error for experiment 4. Cross-validation error
continually increases from the onset of training.
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counterparts did not yield any definitive
difference, but this should be considered
further.

In all, the two principal goals of this
project were realized: a better understanding
of the terminology and difficulties surrounding
speech recognition research was gained, but
there is much more to learn. In addition,
this author is much has a much more concrete
grasp of the back-propagation algorithm and
the implementation of neural nets.

6. FUTURE WORK

It may be that the most common result
of any research project is the recognition
that substantially more work can be done to
further our understanding. Perhaps, because
of its superficial nature and näive assumptions,
this paper will yield more such fruit than
it should. However, before this work can
be extended usefully, a thorough review of
current research, both in speech recognition
and neural networks, should be undertaken.
Many questions raised here may have been
answered already. What follows is merely a
shopping list of ideas generated by this work.

(1) Find the cause of the non-decreasing
cross-validation error. For there to be no
reduction in this value implies that there may
be no identifiable patterns in the feature space.
Since this is unlikely, there may be some unseen
bug in the network software.

(2) Partially to address the problem #1,
the input data should be analyzed carefully. At
the very least, it should be possible to discover
the variability amongst frames assigned the
same tag value, both speaker-to-speaker vari-
ability, and same-speaker contextual variability
for different instances of the same phoneme.
Perhaps speech frames could be clustered by
an ART network for comparison to the output
tags.

(3) Many more speech samples should be
gathered from different speakers. Perhaps
the insufficient data led to the effect of
problem #1.

(4) Fourier transforms produce linear
divisions of the frequency domain. However,
humans do not perceive linear changes in

frequency as linear changes in pitch. Perhaps
the input feature space could be reduced
by applying a different transform method,
yielding perhaps 3 poles per octave. High
upper frequency resolution is almost certainly
wasted.

(5) Different network architectures may
be tried, but higher numbers of nodes will
probably not be effective until the generaliza-
tion problem is identified. Evaluation of the
mapping function of power spectra to input
nodes should be done: perhaps the [0, 1] →

[−1, 1] mapping is counter-productive.
(6) Software could be written to analyze

the state of the network. Perhaps output
signals could be traced back to the input
by following the highest-weighted connections.
For feed-forward networks, this should not be
too difficult to understand.

(7) Phoneme recognition is only part of the
speech regcognition problem. The next phase
of research should investigate how the output
of a phoneme-recognizer could be incorporated
into a word-recognizer.
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